Sabtu, 17 Juli 2010

KEMAMPUAN MEMAHAMI AYAT-AYAT ALLAH…

Dan katakanlah, "Segala puji bagi Allah, dia akan memperlihatkan kepadamu tanda-tanda kebesaran-Nya, maka kamu akan mengetahuinya. Dan Tuhanmu tiada lalai dari apa yang kamu kerjakan." (QS. An-Naml: 93)

Masyarakat zaman sekarang memperlakukan Al Quran berbeda sama sekali dengan tujuan penurunan Al Quran sebenarnya. Di dunia Islam secara umum, sedikit sekali orang yang mengetahui isi Al Quran.

Sebagian di antara mereka sering menyampul Al Quran dengan bagus dan menggantungnya pada dinding rumah, dan orang-orang tua membacanya sekali-sekali. Mereka beranggapan bahwa Al Quran melindungi pembacanya dari "kemalangan dan kesengsaraan". Menurut kepercayaan ini, Al Quran dianggap semacam jimat penangkal bala.

Padahal, ayat-ayat Al Quran menyatakan bahwa tujuan Al Quran diwahyukan sama sekali berbeda dengan yang tersebut di atas. Misalnya, dalam surat Ibrahim ayat ke-52, Allah menyatakan, "(Al Quran) ini adalah penjelasan yang sempurna bagi manusia, dan supaya mereka mengetahui bahwasanya Dia adalah Ilah Yang Maha Esa dan agar orang-orang yang berakal mengambil pelajaran." Dalam banyak ayat lain, Allah menegaskan bahwa salah satu tujuan utama diturunkannya Al Quran adalah untuk mengajak manusia bertafakur.

Dalam Al Quran, Allah mengajak manusia agar tidak mengikuti secara buta kepercayaan dan norma-norma yang diajarkan masyarakat, agar merenung dengan terlebih dahulu menyingkirkan segala prasangka, hal tabu, dan batasan yang ada dalam pikiran mereka.

Manusia harus memikirkan bagaimana ia menjadi ada, apa tujuan hidupnya, mengapa ia akan mati, dan apa yang terjadi setelah kematian. Ia hendaknya mempertanyakan bagaimana dirinya dan seluruh alam semesta ini menjadi ada dan bagaimana keduanya terus-menerus ada. Selagi melakukan hal ini, ia harus membebaskan dirinya dari segala ikatan dan prasangka.

Jika seseorang berpikir-dengan membebaskan akal dan nuraninya dari segala ikatan sosial, ideologis, dan psikologis-pada akhirnya ia akan merasakan bahwa seluruh alam semesta, termasuk dirinya, telah diciptakan oleh sebuah kekuatan Yang Mahatinggi. Bahkan ketika mengamati tubuhnya sendiri atau segala sesuatu di alam, ia akan melihat adanya keserasian, perencanaan, dan kebijaksanaan dalam perancangannya.

Al Quran memberikan petunjuk kepada manusia dalam masalah ini. Dalam Al Quran, Allah memberitahukan apa yang hendaknya kita renungkan dan kita amati. Dengan cara perenungan yang diajarkan dalam Al Quran, seseorang yang beriman kepada Allah akan dapat lebih baik merasakan kesempurnaan, hikmah abadi, ilmu, dan kekuasaan Allah dalam ciptaan-Nya. Jika seorang beriman mulai berpikir sesuai dengan cara-cara yang diajarkan dalam Al Quran, ia pun segera menyadari bahwa seluruh alam semesta adalah sebuah tanda karya seni dan kekuasaan Allah, dan bahwa "alam semesta adalah karya seni, dan bukan pencipta karya seni itu sendiri." Setiap karya seni memperlihatkan keahlian pembuatnya yang khas dan unik, serta menyampaikan pesan-pesannya.

Dalam Al Quran, manusia diseru untuk merenungi berbagai kejadian dan benda alam, yang dengan jelas memberikan kesaksian akan keberadaan dan keesaan Allah beserta sifat-sifat-Nya. Dalam Al Quran, segala sesuatu yang memberikan kesaksian ini disebut "tanda-tanda", yang berarti "bukti yang teruji kebenarannya, pengetahuan mutlak, dan pernyataan kebenaran." Jadi, tanda-tanda kebesaran Allah terdiri atas segala sesuatu di alam semesta ini yang memperlihatkan dan menyampaikan keberadaan dan sifat-sifat Allah. Orang-orang yang dapat mengamati dan senantiasa ingat akan hal ini akan memahami bahwa seluruh jagat raya tersusun hanya dari tanda-tanda kebesaran Allah.

Sungguh, adalah kewajiban bagi manusia untuk dapat melihat tanda-tanda kebesaran Allah…. Dengan demikian, orang tersebut akan mengenal Sang Pencipta yang menciptakan dirinya dan segala sesuatu yang lain, menjadi lebih dekat kepada-Nya, menemukan makna keberadaan dan hidupnya, dan menjadi orang yang beruntung dunia dan akhirat.

Buku ini tidak akan mampu memuat semua tanda kebesaran Allah yang tak terhitung jumlahnya, tidak juga buku yang lain. Segala sesuatu, tarikan napas manusia, perkembangan politik dan sosial, keserasian kosmis di alam semesta, atom yang merupakan materi terkecil, semuanya adalah tanda-tanda kebesaran Allah, dan semuanya berjalan di bawah kendali dan pengetahuan-Nya, menaati hukum-hukum-Nya. Menemukan dan mengenal tanda-tanda (ayat-ayat) Allah memerlukan upaya pribadi. Setiap orang akan menemukan dan memahami ayat-ayat Allah sesuai dengan tingkat pemahaman dan nalarnya masing-masing.

Tentu saja, ada panduan yang mungkin membantu. Pertama-tama, orang dapat mempelajari pokok-pokok tertentu yang ditekankan dalam Al Quran, agar ia memperoleh mentalitas berpikir yang menjadikan dirinya dapat merasakan seluruh alam semesta ini sebagai penjelmaan dari segala ciptaan Allah.

Buku ini ditulis untuk mengetengahkan beberapa masalah yang dianjurkan Al Quran agar kita renungkan. Tanda kebesaran Allah di alam semesta ditegaskan dalam surat An-Nahl:

"Dia-lah Yang telah menurunkan air hujan dari langit untuk kamu, sebagiannya menjadi minuman dan sebagiannya (menyuburkan) tumbuh-tumbuhan, yang pada (tempat tumbuhnya) kamu menggembalakan ternakmu. Dia menumbuhkan bagi kamu dengan air hujan itu tanaman-tanaman; zaitun, korma, anggur, dan segala macam buah-buahan. Sesungguhnya, pada yang demikian itu benar-benar ada tanda (kekuasaan Allah) bagi kaum yang memikirkan. Dan Dia menundukkan malam dan siang, matahari dan bulan untukmu. Dan bintang-bintang itu ditundukkan (untukmu) dengan perintah-Nya. Sesungguhnya pada yang demikian itu benar-benar ada tanda-tanda (kekuasaan Allah) bagi kaum yang memahami-(nya), dan Dia (menundukkan pula) apa yang Dia ciptakan untuk kamu di bumi ini dengan berlain-lainan macamnya. Sesungguhnya, pada yang demikian itu benar-benar terdapat tanda (kekuasaan Allah) bagi kaum yang mengambil pelajaran. Dan Dia-lah Allah yang menundukkan lautan (untukmu), agar kamu dapat memakan darinya daging yang segar (ikan), dan kamu mengeluarkan dari lautan itu perhiasan yang kamu pakai; dan kamu melihat bahtera berlayar padanya, dan supaya kamu mencari (keuntungan) dari karunia-Nya, dan supaya kamu bersyukur. Dan Dia menancapkan gunung-gunung di bumi supaya bumi itu tidak goncang bersama kamu, (dan Dia menciptakan) sungai-sungai dan jalan-jalan agar kamu mendapat petunjuk, dan (Dia ciptakan) tanda-tanda (penunjuk jalan). Dan dengan bintang-bintang itulah mereka mendapat petunjuk. Maka apakah (Allah) yang menciptakan itu sama dengan yang tidak dapat menciptakan (apa-apa)? Maka mengapa kamu tidak mengambil pelajaran?" (QS. An-Nahl, 16: 10-17)

Dalam Al Quran, Allah mengajak kaum berakal untuk memikirkan hal-hal yang biasa diabaikan orang lain, atau yang biasa dikatakan sebagai hasil "evolusi", "kebetulan", atau "keajaiban alam" belaka.

Sesungguhnya, dalam penciptaan langit dan bumi dan silih bergantinya malam dan siang terdapat tanda-tanda bagi orang-orang yang berakal, (yaitu) orang-orang yang mengingat Allah sambil berdiri atau duduk atau dalam keadaan berbaring dan mereka memikirkan penciptaan langit dan bumi (seraya berkata),

"Ya Tuhan kami, tiadalah Engkau menciptakan ini dengan sia-sia, Mahasuci Engkau, maka peliharalah kami dari siksa neraka." (QS. Ali 'Imran:191)

Sebagaimana kita lihat dalam ayat-ayat ini, kaum berakal melihat tanda kebesaran Allah dan berusaha memahami ilmu, kekuasaan, dan kreasi seni-Nya yang tak terhingga ini dengan mengingat dan merenungkan hal-hal tersebut, sebab ilmu Allah tak terbatas dan ciptaan-Nya sempurna tanpa cacat.

Bagi orang yang berakal, segala sesuatu di sekeliling mereka adalah tanda penciptaan.

"Sesungguhnya, Allah tiada segan membuat perumpamaan berupa nyamuk atau yang lebih rendah dari itu. Adapun orang-orang yang beriman, mereka yakin bahwa perumpamaan itu benar dari Tuhan mereka, tetapi mereka yang kafir mengatakan, "Apakah maksud Allah menjadikan ini untuk perumpamaan?" Dengan perumpamaan itu banyak orang yang disesatkan Allah, dan dengan perumpamaan itu (pula) banyak orang yang diberi-Nya petunjuk. Dan tidak ada yang disesatkan Allah kecuali orang-orang yang fasik." (QS. Al Baqarah: 26)


بسم الله الرحمن الرحيم

الحمد لله رب العالمين, وصلاة والسلام على أشرف المرسلين. أما بعد :

Dalam Al Qur'an, yang diturunkan 14 abad silam di saat ilmu astronomi masih terbelakang, mengembangnya alam semesta digambarkan sebagaimana berikut ini:

وَالسَّمَاءَ بَنَيْنَاهَا بِأَيْدٍ وَإِنَّا لَمُوسِعُونَ

"Dan langit itu Kami bangun dengan kekuasaan (Kami) dan sesungguhnya Kami benar-benar meluaskannya." (QS Adz-Dzariyat : 47)



Kata "langit", sebagaimana dinyatakan dalam ayat ini, digunakan di banyak tempat dalam Al Qur'an dengan makna luar angkasa dan alam semesta. Di sini sekali lagi, kata tersebut digunakan dengan arti ini. Dengan kata lain, dalam Al Qur'an dikatakan bahwa alam semesta "mengalami perluasan atau mengembang". Dan inilah yang kesimpulan yang dicapai ilmu pengetahuan masa kini.


Hingga awal abad ke-20, satu-satunya pandangan yang umumnya diyakini di dunia ilmu pengetahuan adalah bahwa alam semesta bersifat tetap dan telah ada sejak dahulu kala tanpa permulaan. Namun, penelitian, pengamatan, dan perhitungan yang dilakukan dengan teknologi modern, mengungkapkan bahwa alam semesta sesungguhnya memiliki permulaan, dan ia terus-menerus "mengembang".


Pada awal abad ke-20, fisikawan Rusia, Alexander Friedmann, dan ahli kosmologi Belgia, George Lemaitre, secara teoritis menghitung dan menemukan bahwa alam semesta senantiasa bergerak dan mengembang.


Fakta ini dibuktikan juga dengan menggunakan data pengamatan pada tahun 1929. Ketika mengamati langit dengan teleskop, Edwin Hubble, seorang astronom Amerika, menemukan bahwa bintang-bintang dan galaksi terus bergerak saling menjauhi. Sebuah alam semesta, di mana segala sesuatunya terus bergerak menjauhi satu sama lain, berarti bahwa alam semesta tersebut terus-menerus "mengembang". Pengamatan yang dilakukan di tahun-tahun berikutnya memperkokoh fakta bahwa alam semesta terus mengembang. Kenyataan ini diterangkan dalam Al Qur'an pada saat tak seorang pun mengetahuinya. Ini dikarenakan Al Qur'an adalah firman Allah, Sang Pencipta, dan Pengatur keseluruhan alam semesta.

Gempa bumi



Pusat-pusat gempa di seluruh dunia pada tahun 1963-1998.

Gempa bumi adalah getaran atau guncangan yang terjadi di permukaan bumi. Gempa bumi biasa disebabkan oleh pergerakan kerak bumi (lempeng bumi). Kata gempa bumi juga digunakan untuk menunjukkan daerah asal terjadinya kejadian gempa bumi tersebut. Bumi kita walaupun padat, selalu bergerak, dan gempa bumi terjadi apabila tekanan yang terjadi karena pergerakan itu sudah terlalu besar untuk dapat ditahan.

Tipe gempa bumi

  1. Gempa bumi vulkanik ( Gunung Api ) ; Gempa bumi ini terjadi akibat adanya aktivitas magma, yang biasa terjadi sebelum gunung api meletus. Apabila keaktifannya semakin tinggi maka akan menyebabkan timbulnya ledakan yang juga akan menimbulkan terjadinya gempabumi. Gempa bumi tersebut hanya terasa di sekitar gunung api tersebut.
  2. Gempa bumi tektonik ; Gempa bumi ini disebabkan oleh adanya aktivitas tektonik, yaitu pergeseran lempeng lempeng tektonik secara mendadak yang mempunyai kekuatan dari yang sangat kecil hingga yang sangat besar. Gempabumi ini banyak menimbulkan kerusakan atau bencana alam di bumi, getaran gempa bumi yang kuat mampu menjalar keseluruh bagian bumi. Gempa bumi tektonik disebabkan oleh perlepasan [tenaga] yang terjadi karena pergeseran lempengan plat tektonik seperti layaknya gelang karet ditarik dan dilepaskan dengan tiba-tiba. Tenaga yang dihasilkan oleh tekanan antara batuan dikenal sebagai kecacatan tektonik. Teori dari tectonic plate (lempeng tektonik) menjelaskan bahwa bumi terdiri dari beberapa lapisan batuan, sebagian besar area dari lapisan kerak itu akan hanyut dan mengapung di lapisan seperti salju. Lapisan tersebut begerak perlahan sehingga berpecah-pecah dan bertabrakan satu sama lainnya. Hal inilah yang menyebabkan terjadinya gempa tektonik.

.Peta penyebarannya mengikuti pola dan aturan yang khusus dan menyempit, yakni mengikuti pola-pola pertemuan lempeng-lempeng tektonik yang menyusun kerak bumi. Dalam ilmu kebumian (geologi), kerangka teoretis tektonik lempeng merupakan postulat untuk menjelaskan fenomena gempa bumi tektonik yang melanda hampir seluruh kawasan, yang berdekatan dengan batas pertemuan lempeng tektonik. Contoh gempa vulkanik ialah seperti yang terjadi di Yogyakarta, Indonesia pada Sabtu, 27 Mei 2006 dini hari, pukul 05.54 WIB,

  1. Gempa bumi tumbukan ; Gempa bumi ini diakibatkan oleh tumbukan meteor atau asteroid yang jatuh ke bumi, jenis gempa bumi ini jarang terjadi
  2. Gempa bumi runtuhan ; Gempa bumi ini biasanya terjadi pada daerah kapur ataupun pada daerah pertambangan, gempabumi ini jarang terjadi dan bersifat lokal.
  3. Gempa bumi buatan ; Gempa bumi buatan adalah gempa bumi yang disebabkan oleh aktivitas dari manusia, seperti peledakan dinamit, nuklir atau palu yang dipukulkan ke permukaan bumi.
Penyebab terjadinya gempa bumi

Kebanyakan gempa bumi disebabkan dari pelepasan energi yang dihasilkan oleh tekanan yang dilakukan oleh lempengan yang bergerak. Semakin lama tekanan itu kian membesar dan akhirnya mencapai pada keadaan dimana tekanan tersebut tidak dapat ditahan lagi oleh pinggiran lempengan. Pada saat itu lah gempa bumi akan terjadi.

Gempa bumi biasanya terjadi di perbatasan lempengan lempengan tersebut. Gempa bumi yang paling parah biasanya terjadi di perbatasan lempengan kompresional dan translasional. Gempa bumi fokus dalam kemungkinan besar terjadi karena materi lapisan litosfer yang terjepit kedalam mengalami transisi fase pada kedalaman lebih dari 600 km.

Beberapa gempa bumi lain juga dapat terjadi karena pergerakan magma di dalam gunung berapi. Gempa bumi seperti itu dapat menjadi gejala akan terjadinya letusan gunung berapi. Beberapa gempa bumi (jarang namun) juga terjadi karena menumpuknya massa air yang sangat besar di balik dam, seperti Dam Karibia di Zambia, Afrika. Sebagian lagi (jarang juga) juga dapat terjadi karena injeksi atau akstraksi cairan dari/ke dalam bumi (contoh. pada beberapa pembangkit listrik tenaga panas bumi dan di Rocky Mountain Arsenal. Terakhir, gempa juga dapat terjadi dari peledakan bahan peledak. Hal ini dapat membuat para ilmuwan memonitor tes rahasia senjata nuklir yang dilakukan pemerintah. Gempa bumi yang disebabkan oleh manusia seperti ini dinamakan juga seismisitas terinduksi

Sejarah gempa bumi besar pada abad ke-20 dan 21

gempa 7,1 guncang biak city di indonesia * gempa 2,9 getarkan lembang* 7 April 2010, Gempa bumi dengan kekuatan 7.2 Skala Richter di Sumatera bagian Utara lainnya berpusat 60km dari Sinabang, Aceh. Tidak menimbulkan tsunami, menimbulkan kerusakan fisik di beberapa daerah, belum ada informasi korban jiwa.

  • 27 Februari 2010, Gempa bumi di Chili dengan 8.8 Skala Richter, 432 orang tewas (data 30 Maret 2010). Mengakibatkan tsunami menyeberangi Samudera Pasifik yang menjangkau hingga Selandia Baru, Australia, kepulauan Hawaii, negara-negara kepulauan di Pasifik dan Jepang dengan dampak ringan dan menengah.
  • 12 Januari 2010, Gempa bumi Haiti dengan episenter dekat kota Léogâne 7,0 Skala Richter berdampak pada 3 juta penduduk, perkiraan korban meninggal 230.000 orang, luka-luka 300.000 orang dan 1.000.000 kehilangan tempat tinggal.
  • 30 September 2009, Gempa bumi Sumatera Barat merupakan gempa tektonik yang berasal dari pergeseran patahan Semangko, gempa ini berkekuatan 7,6 Skala Richter (BMG Indonesia) atau 7,9 Skala Richter (BMG Amerika) mengguncang Padang-Pariaman, Indonesia. Menyebabkan sedikitnya 1.100 orang tewas dan ribuan terperangkap dalam reruntuhan bangunan.
  • 2 September 2009, Gempa Tektonik 7,3 Skala Richter mengguncang Tasikmalaya, Indonesia. Gempa ini terasa hingga Jakarta dan Bali, berpotensi tsunami. Korban jiwa masih belum diketahui jumlah pastinya karena terjadi Tanah longsor sehingga pengevakuasian warga terhambat.
Kerusakan akibat gempa bumi di San Francisco pada tahun 1906
Sebagian jalan layang yang runtuh akibat gempa bumi Loma Prieta pada tahun 1989

Siklus air


Siklus air.

Pergerakan air di permukan Bumi yang dinamakan siklus air.

Siklus air atau siklus hidrologi adalah sirkulasi air yang tidak pernah berhenti dari atmosfer ke bumi dan kembali ke atmosfir melalui kondensasi, presipitasi, evaporasi dan transpirasi.

Pemanasan air laut oleh sinar matahari merupakan kunci proses siklus hidrologi tersebut dapat berjalan secara terus menerus. Air berevaporasi, kemudian jatuh sebagai presipitasi dalam bentuk hujan, salju, hujan batu, hujan es dan salju (sleet), hujan gerimis atau kabut.

Pada perjalanan menuju bumi beberapa presipitasi dapat berevaporasi kembali ke atas atau langsung jatuh yang kemudian diintersepsi oleh tanaman sebelum mencapai tanah. Setelah mencapai tanah, siklus hidrologi terus bergerak secara kontinu dalam tiga cara yang berbeda:

  • Evaporasi / transpirasi - Air yang ada di laut, di daratan, di sungai, di tanaman, dsb. kemudian akan menguap ke angkasa (atmosfer) dan kemudian akan menjadi awan. Pada keadaan jenuh uap air (awan) itu akan menjadi bintik-bintik air yang selanjutnya akan turun (precipitation) dalam bentuk hujan, salju, es.
  • Infiltrasi / Perkolasi ke dalam tanah - Air bergerak ke dalam tanah melalui celah-celah dan pori-pori tanah dan batuan menuju muka air tanah. Air dapat bergerak akibat aksi kapiler atau air dapat bergerak secara vertikal atau horizontal dibawah permukaan tanah hingga air tersebut memasuki kembali sistem air permukaan.
  • Air Permukaan - Air bergerak diatas permukaan tanah dekat dengan aliran utama dan danau; makin landai lahan dan makin sedikit pori-pori tanah, maka aliran permukaan semakin besar. Aliran permukaan tanah dapat dilihat biasanya pada daerah urban. Sungai-sungai bergabung satu sama lain dan membentuk sungai utama yang membawa seluruh air permukaan disekitar daerah aliran sungai menuju laut.

Air permukaan, baik yang mengalir maupun yang tergenang (danau, waduk, rawa), dan sebagian air bawah permukaan akan terkumpul dan mengalir membentuk sungai dan berakhir ke laut. Proses perjalanan air di daratan itu terjadi dalam komponen-komponen siklus hidrologi yang membentuk sistem Daerah Aliran Sungai (DAS).Jumlah air di bumi secara keseluruhan relatif tetap, yang berubah adalah wujud dan tempatnya.

Petir


Petir di atas kota Piracibaba, Brazil

Petir atau halilintar adalah gejala alam yang biasanya muncul pada musim hujan di mana di langit muncul kilatan cahaya sesaat yang menyilaukan biasanya disebut kilat yang beberapa saat kemudian disusul dengan suara menggelegar sering disebut Guruh. Perbedaan waktu kemunculan ini disebabkan adanya perbedaan antara kecepatan suara dan kecepatan cahaya.

Petir merupakan gejala alam yang bisa kita analogikan dengan sebuah kapasitor raksasa, dimana lempeng pertama adalah awan (bisa lempeng negatif atau lempeng positif) dan lempeng kedua adalah bumi (dianggap netral). Seperti yang sudah diketahui kapasitor adalah sebuah komponen pasif pada rangkaian listrik yang bisa menyimpan energi sesaat (energy storage). Petir juga dapat terjadi dari awan ke awan (intercloud), dimana salah satu awan bermuatan negatif dan awan lainnya bermuatan positif.

Petir terjadi karena ada perbedaan potensial antara awan dan bumi atau dengan awan lainnya. Proses terjadinya muatan pada awan karena dia bergerak terus menerus secara teratur, dan selama pergerakannya dia akan berinteraksi dengan awan lainnya sehingga muatan negatif akan berkumpul pada salah satu sisi (atas atau bawah), sedangkan muatan positif berkumpul pada sisi sebaliknya. Jika perbedaan potensial antara awan dan bumi cukup besar, maka akan terjadi pembuangan muatan negatif (elektron) dari awan ke bumi atau sebaliknya untuk mencapai kesetimbangan. Pada proses pembuangan muatan ini, media yang dilalui elektron adalah udara. Pada saat elektron mampu menembus ambang batas isolasi udara inilah terjadi ledakan suara. Petir lebih sering terjadi pada musim hujan, karena pada keadaan tersebut udara mengandung kadar air yang lebih tinggi sehingga daya isolasinya turun dan arus lebih mudah mengalir. Karena ada awan bermuatan negatif dan awan bermuatan positif, maka petir juga bisa terjadi antar awan yang berbeda muatan.


Pada awal penyelidikan listrik melalui tabung Leyden dan peralatan lainnya, sejumlah orang (Dr. Wall, Gray, Abbé Nollet) mengusulkan 'spark' skala kecil memiliki beberapa kemiripan dengan petir.

Benjamin Franklin, yang juga menemukan penangkal petir, berusaha mengetes teori ini dengan menggunakan sebuah tiang yang didirikan di Philadelphia. Selagi dia menunggu penyelesaian tiang tesebut, beberapa orang lainnya (Dalibard dan De Lors) melakukan di Marly di Perancis apa yang kemudian dikenal sebagai eksperimen Philadelphia yang Franklin usulkan di bukunya.

Franklin biasanya mendapatkan kredit untuk menjadi yang pertama mengusulkan eksperimen ini, karena dia tertarik dalam cuaca. (Dia mencipatakan ilmu meteorologi.)

Meskipun eksperimen dari masa Franklin menunjukkan bahwa petir adalah sebuah discharge dari listrik statik, hanya ada sedikit peningkatan dalam teori ini selama lebih dari 150 tahun. Pendorong untuk riset baru berasal dari bidang teknik tenaga: jalur transmisi tenaga digunakan dan teknisi ingin mengetahui lebih banyak tentang petir. Meskipun sebabnya diperdebatkan (dan masih berlanjut sampai sekarang), riset menghasilkan banyak informasi baru tentang fenomena petir, terutama jumlah arus dan energi yang terdapat.

Perlindungan terhadap Sambaran Petir

Manusia selalu mencoba untuk menjinakkan keganasan alam, salah satunya adalah bahaya sambaran petir. Ada beberapa metode untuk melindungi diri dan lingkungan dari sambaran petir. Metode yang paling sederhana tapi sangat efektif adalah metode Sangkar Faraday. Yaitu dengan melindungi area yang hendak diamankan dengan melingkupinya memakai konduktor yang dihubungkan dengan pembumian.

Pelangi

Rainbow formation.png

Pelangi atau bianglala adalah gejala optik dan meteorologi berupa cahaya beraneka warna saling sejajar yang tampak di langit atau medium lainnya. Di langit, pelangi tampak sebagai busur cahaya dengan ujungnya mengarah pada horizon pada suatu saat hujan ringan. Pelangi juga dapat dilihat di sekitar air terjun yang deras.

Pembentukan

Cahaya matahari adalah cahaya polikromatik (terdiri dari banyak warna). Warna putih cahaya matahari sebenarnya adalah gabungan dari berbagai cahaya dengan panjang gelombang yang berbeda-beda. Mata manusia sanggup mencerap paling tidak tujuh warna yang dikandung cahaya matahari, yang akan terlihat pada pelangi: merah, jingga, kuning, hijau, biru, nila, dan ungu.

Panjang gelombang cahaya ini membentuk pita garis-garis paralel, tiap warna bernuansa dengan warna di sebelahnya. Pita ini disebut spektrum. Di dalam spektrum, garis merah selalu berada pada salah satu sisi dan biru serta ungu di sisi lain, dan ini ditentukan oleh perbedaan panjang gelombang.

Pelangi tidak lain adalah busur spektrum besar yang terjadi karena pembiasan cahaya matahari oleh butir-butir air. Ketika cahaya matahari melewati butiran air, ia membias seperti ketika melalui prisma kaca. Jadi di dalam tetesan air, kita sudah mendapatkan warna yang berbeda memanjang dari satu sisi ke sisi tetesan air lainnya. Beberapa dari cahaya berwarna ini kemudian dipantulkan dari sisi yang jauh pada tetesan air, kembali dan keluar lagi dari tetesan air.

Cahaya keluar kembali dari tetesan air ke arah yang berbeda, tergantung pada warnanya. Warna-warna pada pelangi ini tersusun dengan merah di paling atas dan ungu di paling bawah pelangi.

Pelangi hanya dapat dilihat saat hujan bersamaan dengan matahari bersinar, tapi dari sisi yang berlawanan dengan si pengamat. Posisi si pengamat harus berada di antara matahari dan tetesan air dengan matahari dibekalang orang tersebut. Matahari, mata si pengamat dan pusat busur pelangi harus berada dalam satu garis lurus.

KALOR

Pengertian Kalor

Kalor didefinisikan sebagai energi panas yang dimiliki oleh suatu zat. Secara umum untuk mendeteksi adanya kalor yang dimiliki oleh suatu benda yaitu dengan mengukur suhu benda tersebut. Jika suhunya tinggi maka kalor yang dikandung oleh benda sangat besar, begitu juga sebaliknya jika suhunya rendah maka kalor yang dikandung sedikit.

Dari hasil percobaan yang sering dilakukan besar kecilnya kalor yang dibutuhkan suatu benda(zat) bergantung pada 3 faktor

  1. massa zat
  2. jenis zat (kalor jenis)
  3. perubahan suhu

Sehingga secara matematis dapat dirumuskan :

Q = m.c.(t2 – t1)

Dimana :

Q adalah kalor yang dibutuhkan (J)

m adalah massa benda (kg)

c adalah kalor jenis (J/kgC)

(t2-t1) adalah perubahan suhu (C)

Kalor dapat dibagi menjadi 2 jenis

  • Kalor yang digunakan untuk menaikkan suhu
  • Kalor yang digunakan untuk mengubah wujud (kalor laten), persamaan yang digunakan dalam kalor laten ada dua macam Q = m.U dan Q = m.L. Dengan U adalah kalor uap (J/kg) dan L adalah kalor lebur (J/kg)

Dalam pembahasan kalor ada dua kosep yang hampir sama tetapi berbeda yaitu kapasitas kalor (H) dan kalor jenis (c)

Kapasitas kalor adalah banyaknya kalor yang diperlukan untuk menaikkan suhu benda sebesar 1 derajat celcius.

H = Q/(t2-t1)

Kalor jenis adalah banyaknya kalor yang dibutuhkan untuk menaikkan suhu 1 kg zat sebesar 1 derajat celcius. Alat yang digunakan untuk menentukan besar kalor jenis adalah kalorimeter.

c = Q/m.(t2-t1)

Bila kedua persamaan tersebut dihubungkan maka terbentuk persamaan baru

H = m.c

Analisis grafik perubahan wujud pada es yang dipanaskan sampai menjadi uap. Dalam grafik ini dapat dilihat semua persamaan kalor digunakan.

Grafik Perubahan Wujud Es

Keterangan :

Pada Q1 es mendapat kalor dan digunakan menaikkan suhu es, setelah suhu sampai pada 0 C kalor yang diterima digunakan untuk melebur (Q2), setelah semua menjadi air barulah terjadi kenaikan suhu air (Q3), setelah suhunya mencapai suhu 100 C maka kalor yang diterima digunakan untuk berubah wujud menjadi uap (Q4), kemudian setelah berubah menjadi uap semua maka akan kembali terjadi kenaikan suhu kembali (Q5)

Untuk mencoba kemampuan silakan kkerjakan latihan soal dengan cara klik disini.

Hubungan antara kalor dengan energi listrik

Kalor merupakan bentuk energi maka dapat berubah dari satu bentuk kebentuk yang lain. Berdasarkan Hukum Kekekalan Energi maka energi listrik dapat berubah menjadi energi kalor dan juga sebaliknya energi kalor dapat berubah menjadi energi listrik. Dalam pembahasan ini hanya akan diulas tentang hubungan energi listrik dengan energi kalor. Alat yang digunakan mengubah energi listrik menjadi energi kalor adalah ketel listrik, pemanas listrik, dll.

Besarnya energi listrik yang diubah atau diserap sama dengan besar kalor yang dihasilkan. Sehingga secara matematis dapat dirumuskan.

W = Q

Untuk menghitung energi listrik digunakan persamaan sebagai berikut :

W = P.t

Keterangan :

W adalah energi listrik (J)

P adalah daya listrik (W)

t adalah waktu yang diperlukan (s)

Bila rumus kalor yang digunakan adalah Q = m.c.(t2 – t1) maka diperoleh persamaan ;

P.t = m.c.(t2 – t1)

Yang perlu diperhatikan adalah rumus Q disini dapat berubah-ubah sesuai dengan soal.

Asas Black

Menurut asas Black apabila ada dua benda yang suhunya berbeda kemudian disatukan atau dicampur maka akan terjadi aliran kalor dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah. Aliran ini akan berhenti sampai terjadi keseimbangan termal (suhu kedua benda sama). Secara matematis dapat dirumuskan :

Q lepas = Q terima

Yang melepas kalor adalah benda yang suhunya tinggi dan yang menerima kalor adalah benda yang bersuhu rendah. Bila persamaan tersebut dijabarkan maka akan diperoleh :

Q lepas = Q terima

m1.c1.(t1 – ta) = m2.c2.(ta-t2)

Catatan yang harus selalu diingat jika menggunakan asasa Black adalah pada benda yang bersuhu tinggi digunakan (t1 – ta) dan untuk benda yang bersuhu rendah digunakan (ta-t2). Dan rumus kalor yang digunakan tidak selalu yang ada diatas bergantung pada soal yang dikerjakan.


Energi Nuklir, Pengertian dan Pemanfaatannya

nuclear-energy-gmr

Masalah energi merupakan salah satu isu penting yang sedang hangat dibicarakan. Semakin berkurangnya sumber energi, penemuan sumber energi baru, pengembangan energi-energi alternatif, dan dampak penggunaan energi minyak bumi terhadap lingkungan hidup menjadi tema-tema yang menarik dan banyak didiskusikan. Pemanasan global yang diyakini sedang terjadi dan akan memasuki tahap yang mengkhawatirkan disebut-sebut juga merupakan dampak penggunaan energi minyak bumi yang merupakan sumber energi utama saat ini.

Dampak lingkungan dan semakin berkurangnya sumber energi minyak bumi memaksa kita untuk mencari dan mengembangkan sumber energi baru. Salah satu alternatif sumber energi baru yang potensial datang dari energi nuklir. Meski dampak dan bahaya yang ditimbulkan amat besar, tidak dapat dipungkiri bahwa energi nuklir adalah salah satu alternatif sumber energi yang layak diperhitungkan.

Isu energi nuklir yang berkembang saat ini memang berkisar tentang penggunaan energi nuklir dalam bentuk bom nuklir dan bayangan buruk tentang musibah hancurnya reaktor nuklir di Chernobyl. Isu-isu ini telah membentuk bayangan buruk dan menakutkan tentang nuklir dan pengembangannya. Padahal, pemanfaatan yang bijaksana, bertanggung jawab, dan terkendali atas energi nuklir dapat meningkatkan taraf hidup sekaligus memberikan solusi atas masalah kelangkaan energi.

Fisi Nuklir

Secara umum, energi nuklir dapat dihasilkan melalui dua macam mekanisme, yaitu pembelahan inti atau reaksi fisi dan penggabungan beberapa inti melalui reaksi fusi. Di sini akan dibahas salah satu mekanisme produksi energi nuklir, yaitu reaksi fisi nuklir.

Sebuah inti berat yang ditumbuk oleh partikel (misalnya neutron) dapat membelah menjadi dua inti yang lebih ringan dan beberapa partikel lain. Mekanisme semacam ini disebut pembelahan inti atau fisi nuklir. Contoh reaksi fisi adalah uranium yang ditumbuk (atau menyerap) neutron lambat.

fisi01Reaksi fisi uranium seperti di atas menghasilkan neutron selain dua buah inti atom yang lebih ringan. Neutron ini dapat menumbuk (diserap) kembali oleh inti uranium untuk membentuk reaksi fisi berikutnya. Mekanisme ini terus terjadi dalam waktu yang sangat cepat membentuk reaksi berantai tak terkendali. Akibatnya, terjadi pelepasan energi yang besar dalam waktu singkat. Mekanisme ini yang terjadi di dalam bom nuklir yang menghasilkan ledakan yang dahsyat. Jadi, reaksi fisi dapat membentuk reaksi berantai tak terkendali yang memiliki potensi daya ledak yang dahsyat dan dapat dibuat dalam bentuk bom nuklir.

reaksi fisi berantai (sumber: www.scienceclarified.com)

reaksi fisi berantai (sumber: www.scienceclarified.com)

Dibandingkan dibentuk dalam bentuk bom nuklir, pelepasan energi yang dihasilkan melalui reaksi fisi dapat dimanfaatkan untuk hal-hal yang lebih berguna. Untuk itu, reaksi berantai yang terjadi dalam reaksi fisi harus dibuat lebih terkendali. Usaha ini bisa dilakukan di dalam sebuah reaktor nuklir. Reaksi berantai terkendali dapat diusahakan berlangsung di dalam reaktor yang terjamin keamanannya dan energi yang dihasilkan dapat dimanfaatkan untuk keperluan yang lebih berguna, misalnya untuk penelitian dan untuk membangkitkan listrik.

reaksi fisi berantai terkendali (sumber: www.atomicarchive.com)

reaksi fisi berantai terkendali (sumber: www.atomicarchive.com)

Di dalam reaksi fisi yang terkendali, jumlah neutron dibatasi sehingga hanya satu neutron saja yang akan diserap untuk pembelahan inti berikutnya. Dengan mekanisme ini, diperoleh reaksi berantai terkendali yang energi yang dihasilkannya dapat dimanfaatkan untuk keperluan yang berguna.

Reaktor Nuklir

Energi yang dihasilkan dalam reaksi fisi nuklir dapat dimanfaatkan untuk keperluan yang berguna. Untuk itu, reaksi fisi harus berlangsung secara terkendali di dalam sebuah reaktor nuklir. Sebuah reaktor nuklir paling tidak memiliki empat komponen dasar, yaitu elemen bahan bakar, moderator neutron, batang kendali, dan perisai beton.

skema reaktor nuklir (sumber: http://personales.alc.upv.es

skema reaktor nuklir (sumber: http://personales.alc.upv.es)

Elemen bahan bakar menyediakan sumber inti atom yang akan mengalami fusi nuklir. Bahan yang biasa digunakan sebagai bahan bakar adalah uranium U. elemen bahan bakar dapat berbentuk batang yang ditempatkan di dalam teras reaktor.

Neutron-neutron yang dihasilkan dalam fisi uranium berada dalam kelajuan yang cukup tinggi. Adapun, neutron yang memungkinkan terjadinya fisi nuklir adalah neutron lambat sehingga diperlukan material yang dapat memperlambat kelajuan neutron ini. Fungsi ini dijalankan oleh moderator neutron yang umumnya berupa air. Jadi, di dalam teras reaktor terdapat air sebagai moderator yang berfungsi memperlambat kelajuan neutron karena neutron akan kehilangan sebagian energinya saat bertumbukan dengan molekul-molekul air.

Fungsi pengendalian jumlah neutron yang dapat menghasilkan fisi nuklir dalam reaksi berantai dilakukan oleh batang-batang kendali. Agar reaksi berantai yang terjadi terkendali dimana hanya satu neutron saja yang diserap untuk memicu fisi nuklir berikutnya, digunakan bahan yang dapat menyerap neutron-neutron di dalam teras reaktor. Bahan seperti boron atau kadmium sering digunakan sebagai batang kendali karena efektif dalam menyerap neutron.

Batang kendali didesain sedemikian rupa agar secara otomatis dapat keluar-masuk teras reaktor. Jika jumlah neutron di dalam teras reaktor melebihi jumlah yang diizinkan (kondisi kritis), maka batang kendali dimasukkan ke dalam teras reaktor untuk menyerap sebagian neutron agar tercapai kondisi kritis. Batang kendali akan dikeluarkan dari teras reaktor jika jumlah neutron di bawah kondisi kritis (kekurangan neutron), untuk mengembalikan kondisi ke kondisi kritis yang diizinkan.

Radiasi yang dihasilkan dalam proses pembelahan inti atom atau fisi nuklir dapat membahayakan lingkungan di sekitar reaktor. Diperlukan sebuah pelindung di sekeliling reaktor nuklir agar radiasi dari zat radioaktif di dalam reaktor tidak menyebar ke lingkungan di sekitar reaktor. Fungsi ini dilakukan oleh perisai beton yang dibuat mengelilingi teras reaktor. Beton diketahui sangat efektif menyerap sinar hasil radiasi zat radioaktif sehingga digunakan sebagai bahan perisai.

Pembangkit Listrik Tenaga Nuklir

Energi yang dihasilkan dari reaksi fisi nuklir terkendali di dalam reaktor nuklir dapat dimanfaatkan untuk membangkitkan listrik. Instalasi pembangkitan energi listrik semacam ini dikenal sebagai pembangkit listrik tenaga nuklir (PLTN).

reactor-engr-wisc-edu1

skema pembangkit listrik tenaga nuklir (sumber: http://reactor.engr.wisc.edu)

Salah satu bentuk reaktor nuklir adalah reaktor air bertekanan (pressurized water reactor/PWR) yang skemanya ditunjukkan dalam gambar. Energi yang dihasilkan di dalam reaktor nuklir berupa kalor atau panas yang dihasilkan oleh batang-batang bahan bakar. Kalor atau panas dialirkan keluar dari teras reaktor bersama air menuju alat penukar panas (heat exchanger). Di sini uap panas dipisahkan dari air dan dialirkan menuju turbin untuk menggerakkan turbin menghasilkan listrik, sedangkan air didinginkan dan dipompa kembali menuju reaktor. Uap air dingin yang mengalir keluar setelah melewati turbin dipompa kembali ke dalam reaktor.

Untuk menjaga agar air di dalam reaktor (yang berada pada suhu 300oC) tidak mendidih (air mendidih pada suhu 100oC dan tekanan 1 atm), air dijaga dalam tekanan tinggi sebesar 160 atm. Tidak heran jika reaktor ini dinamakan reaktor air bertekanan.

Meteorit Menjadi Ancaman Bumi dari Antariksa



Meteor yang sampai ke Bumi dalam ukuran cukup besar merupakan kejadian langka, tetapi kemungkinan meteorit mengenai permukiman akan meningkat seiring memadatnya penduduk. Ancaman lain dari antariksa muncul dengan bertambahnya jumlah sampah antariksa berupa rongsokan satelit.

Meteorit yang menimpa rumah seperti yang terjadi pada Kamis (29/4/2010) di permukiman padat di Kelurahan Malakasari, Duren Sawit, Jakarta Timur, menurut catatan Lembaga Penerbangan dan Antariksa Nasional (Lapan), merupakan yang pertama kali terjadi di Indonesia.

Selama ini, meteorit—batu meteor yang sampai ke permukaan Bumi—jatuh di wilayah tak berpenghuni. Tujuh tahun terakhir, Lapan mencatat ada beberapa kejadian meteorit di wilayah Indonesia, antara lain berlokasi di pinggir hutan dekat Pontianak, Kalimantan Barat (2003); di sebuah lahan terbuka di Tegal; dan daerah persawahan di Gianyar, Bali (2008).

Yang terakhir adalah meteor yang jatuh di Bone, Sulawesi Selatan, Oktober 2009. Meteor berdiameter sekitar 10 meter yang jatuh di perairan dekat Teluk Bone ini menimbulkan ledakan yang besar di udara, dan dilihat oleh banyak saksi mata.

Sejak tahun 1908, wilayah daratan Indonesia diketahui pernah kejatuhan 17 meteor berukuran relatif besar. Kejadian paling awal adalah meteor seberat 1,63 kilogram yang ditemukan di Pulau Kangean, Sumenep, Jawa Timur, 27 November 1908. Meteor yang terberat ditemukan di Jumapolo, Jawa Timur, 13 Maret 1984, seberat 32,49 kg.

Kejatuhan benda langit

Setiap bulan sesungguhnya permukaan Bumi ini terkena jatuhan meteorit. Namun, banyak yang tidak diketahui manusia karena meteorit jatuh di laut, hutan, rawa, dan daerah terbuka lainnya. Meteorit yang jatuh di wilayah Indonesia bisa terjadi 2 hingga 3 tahun sekali. Peluang jatuh di darat pun kecil karena sebagian besar wilayahnya berupa lautan.

Ukuran meteorit yang sampai ke permukaan Bumi pun sangat kecil, berupa serpihan dan pasir. Benda antariksa itu masuk ke atmosfer dengan kecepatan sekitar 100.000 kilometer per jam. Ia biasanya akan terkikis oleh massa udara yang relatif padat di atmosfer Bumi. Akibatnya, meteorit akan mulai terbakar dengan suhu ratusan derajat celsius menyerupai bola api pada ketinggian 100 km dari permukaan Bumi.

”Oleh karena itu, begitu sampai di Bumi, meteorit telah hancur berkeping-keping berupa serpihan,” ujar Thomas Djamaluddin, pakar astronomi dan astrofisika dari Lapan.

Karena panas yang sangat tinggi, bagian luar meteorit akan meleleh hingga menyisakan material yang menghitam di permukaan Bumi.

Meteorit umumnya mengandung nikel dan logam lain. Adapun yang berupa batuan terdiri dari karbon dan silikat. ”Material dari langit itu tidak mengandung zat beradiasi atau radioaktif,” kata Thomas.

Meteor

Meteor merupakan sisa asteroid atau bintang yang telah hancur atau sisa-sisa dari pembentukan tata surya antarplanet. Saat Bumi yang berada dalam tata surya Matahari berpapasan dengan obyek antariksa itu, meteor akan tertarik oleh gravitasi Bumi hingga masuk ke atmosfer.

Hingga kini, belum ada sistem pemantau yang mampu mendeteksi meteor yang berukuran kurang dari 10 meter, apalagi meteor yang gerakannya sangat sporadis dan acak.

Berbeda dengan jatuhnya sampah antariksa, hujan meteor bisa diprediksi setiap bulannya. Hujan meteor berupa butiran seukuran pasir berasal dari gugusan debu sisa komet.

Selain hujan meteor Lyrid bulan lalu, penduduk Bumi akan melihat hujan meteor awal Mei ini dan di antaranya meteor Leonid pada November mendatang. Tahun ini total akan ada 11 kali hujan meteor utama.

Debu antariksa

Di sekeliling Bumi ini bertebaran batuan antariksa dengan berbagai ukuran dari yang berukuran pasir hingga relatif lebih besar. Jumlahnya mencapai lebih dari 25.000 ton.

Material ini belum termasuk sampah antariksa akibat aktivitas manusia sendiri. Sampah itu berupa rongsokan satelit yang tidak aktif lagi. Menurut data Lapan, jumlah sampah antariksa lebih dari 15.000 buah.

Khusus untuk sampah satelit ini, pihak Badan Penerbangan dan Antariksa Amerika Serikat (NASA) telah mengeluarkan katalog untuk setiap satelit bekas yang berada di sekeliling Bumi. Katalog itu juga memuat pemilik satelit itu dan potensi bahaya saat masuk ke atmosfer. Sayangnya, katalog itu hanya berisi daftar sampah yang berukuran di atas 10 meter.

Jatuhnya sampah antariksa merupakan ancaman lain bagi Indonesia. Peluang jatuhnya serpihan satelit—yang beredar di sekitar khatulistiwa—tergolong besar karena Indonesia membentang hingga seperdelapan wilayah khatulistiwa. Hal itu disampaikan Kepala Pusat Pemanfaatan Sains Antariksa Lembaga Penerbangan dan Antariksa Nasional Sri Kaloka.

Sama seperti meteor, meski sampah antariksa berupa kepingan, benda itu akan melesat dengan kecepatan yang sangat tinggi saat jatuh ke permukaan Bumi dan bisa mengenai kawasan permukiman atau obyek penting lain.

Untuk mengantisipasi hal itu, Lapan mengamati obyek itu dan melakukan tindakan pengamanan sebelum kejadian, misalnya dengan menutup jalan tol dan membebaskan kawasan yang akan terkena obyek tersebut.

Pada masa mendatang, peluang jatuhnya sampah antariksa di muka Bumi akan kian membesar. Hingga 27 Januari tahun lalu, jumlah serpihan ada 7.789 (berukuran di atas 10 cm), satelit berfungsi dan tidak berfungsi berjumlah 3.338, serta badan roket sebanyak 1.820. Total, ada 12.947 buah.

Rabu, 30 Juni 2010

jangka sorong

Jangka sorong adalah suatu alat ukur panjang yang dapat dipergunakan untuk mengukur panjang suatu benda dengan ketelitian hingga 0,1 mm. keuntungan penggunaan jangka sorong adalah dapat dipergunakan untuk mengukur diameter sebuah kelereng, diameter dalam sebuah tabung atau cincin, maupun kedalam sebuah tabung.

Pada gambar disamping ditunjukkan bagian-bagian dari jangka sorong. (sorot masing-masing bagian dari jangka sorong tersebut untuk mengetahui nama setiap bagian).

Secara umum, jangka sorong terdiri atas 2 bagian yaitu rahang tetap dan rahang geser. Jangka sorong juga terdiri atas 2 bagian yaitu skala utama yang terdapat pada rahang tetap dan skala nonius (vernier) yang terdapat pada rahang geser.

Sepuluh skala utama memiliki panjang 1 cm, dengan kata lain jarak 2 skala utama yang saling berdekatan adalah 0,1 cm. Sedangkan sepuluh skala nonius memiliki panjang 0,9 cm, dengan kata lain jarak 2 skala nonius yang saling berdekatan adalah 0,09 cm. Jadi beda satu skala utama dengan satu skala nonius adalah 0,1 cm – 0,09 cm = 0,01 cm atau 0,1 mm. Sehingga skala terkecil dari jangka sorong adalah 0,1 mm atau 0,01 cm.

Ketelitian dari jangka sorong adalah setengah dari skala terkecil. Jadi ketelitian jangka sorong adalah : Dx = ½ x 0,01 cm = 0,005 cm

Dengan ketelitian 0,005 cm, maka jangka sorong dapat dipergunakan untuk mengukur diameter sebuah kelereng atau cincin dengan lebih teliti (akurat).

Seperti yang sudah dijelaskan sebelumnya bahwa jangka sorong dapat dipergunakan untuk mengukur diameter luar sebuah kelereng, diameter dalam sebuah tabung atau cincin maupun untuk mengukur kedalaman sebuah tabung. Berikut akan dijelaskan langkah-langkah menggunakan jangka sorong untuk keperluan tersebut

1. Mengukur diameter luar

Untuk mengukur diameter luar sebuah benda (misalnya kelereng) dapat dilakukan dengan langkah sebagai berikut

* Geserlah rahang geser jangka sorong kekanan sehingga benda yang diukur dapat masuk diantara kedua rahang (antara rahang geser dan rahang tetap)
* Letakkan benda yang akan diukur diantara kedua rahang.
* Geserlah rahang geser kekiri sedemikian sehingga benda yang diukur terjepit oleh kedua rahang
* Catatlah hasil pengukuran anda

2. Mengukur diameter dalam

Untuk mengukur diameter dalam sebuah benda (misalnya diameter dalam sebuah cincin) dapat dilakukan dengan langkah sebagai berikut :

* Geserlah rahang geser jangka sorong sedikit kekanan.
* Letakkan benda/cincin yang akan diukur sedemikian sehingga kedua rahang jangka sorong masuk ke dalam benda/cincin tersebut
* Geserlah rahang geser kekanan sedemikian sehingga kedua rahang jangka sorong menyentuh kedua dinding dalam benda/cincin yang diukur
* Catatlah hasil pengukuran anda

3. Mengukur kedalaman

Untuk mengukur kedalaman sebuah benda/tabung dapat dilakukan dengan langkah sebagai berikut :

* Letakkan tabung yang akan diukur dalam posisi berdiri tegak.
* Putar jangka (posisi tegak) kemudian letakkan ujung jangka sorong ke permukaan tabung yang akan diukur dalamnya.
* Geserlah rahang geser kebawah sehingga ujung batang pada jangka sorong menyentuh dasar tabung.
* Catatlah hasil pengukuran anda.

Untuk membaca hasil pengukuran menggunakan jangka sorong dapat dilakukan dengan langkah sebagai berikut :

1. Bacalah skala utama yang berimpit atau skala terdekat tepat didepan titik nol skala nonis.
2. Bacalah skala nonius yang tepat berimpit dengan skala utama.
3. Hasil pengukuran dinyatakan dengan persamaan :

Hasil = Skala Utama + (skala nonius yang berimpit x skala terkecil jangka sorong) = Skala Utama + (skala nonius yang berimpit x 0,01 cm)

Karena Dx = 0,005 cm (tiga desimal), maka hasil pembacaan pengukuran (xo) harus juga dinyatakan dalam 3 desimal. Tidak seperti mistar, pada jangka sorong yang memiliki skala nonius, Anda tidak pernah menaksir angka terakhir (desimal ke-3) sehingga anda cukup berikan nilai 0 untuk desimal ke-3. sehingga hasil pengukuran menggunakan jangka sorong dapat anda laporkan sebagai :

Panjang L = xo ­+ Dx

Misalnya L = (4,990 + 0,005) cm

Jangka sorong biasanya digunakan untuk:

1. mengukur suatu benda dari sisi luar dengan cara diapit;

2. Mengukur sisi dalam suatu benda yang biasanya berupa lubang (pada pipa, maupun lainnya) dengan cara diulur;

3. Mengukur kedalamanan celah/lubang pada suatu benda dengan cara “menancapkan/menusukkan” bagian pengukur.

4. Jangka sorong memiliki dua macam skala: skala utama dan nonius.


Lihat contoh cara mengukur di bawah.


Lihatlah skala nonius yang berhimpit dengan skala utama. Di contoh, yang berhimpit adalah angka 4 (diberi tanda merah). Itu berarti 0.04 mm. Sekarang lihatlah ke skala utama di sebelah kiri angka nonius 0. Di situ menunjukkan angka 4,7 cm. Berarti hasil pengukurannya adalah 4,7 cm + 0.04 cm = 4,74 cm. Ingat lagi kan pelajaran SMA? Hehe. Untuk pembacaan ke inch prinsipnya sama, hanya saja harus pintar menggunakan skala yang berbeda

Gerak Melingkar

Setiap hari kita selalu melihat sepeda motor, mobil, pesawat atau kendaraan beroda lainnya. Apa yang terjadi seandainya kendaraan tersebut tidak mempunyai roda ? yang pasti kendaraan tersebut tidak akan bergerak. Sepeda motor atau mobil dapat berpindah tempat dengan mudah karena rodanya berputar, demikian juga pesawat terbang tidak akan lepas landas jika terdapat kerusakan fungsi roda. Putaran roda merupakan salah satu contoh gerak melingkar yang selalu kita temui dalam kehidupan sehari-hari, walaupun sering luput dari perhatian kita. Permainan gasing merupakan contoh lainnya. Sangat banyak gerakan benda yang berbentuk melingkar yang dapat kita amati dalam kehidupan sehari-hari, termasuk gerakan mobil/sepeda motor pada tikungan jalan, gerakan planet kesayangan kita (bumi), planet-planet lainnya, satelit, bintang dan benda angkasa yang lain. Anda dapat menyebutnya satu persatu.

Setiap benda yang bergerak membentuk suatu lingkaran dikatakan melakukan gerakan melingkar. Sebelum membahas lebih jauh mengenai gerak melingkar, terlebih dahulukita pelajari besaran-besaran fisis dalam gerak melingkar.

Besaran-Besaran Fisis dalam Gerak Melingkar

(Perpindahan Sudut, Kecepatan sudut dan Percepatan Sudut)

Dalam gerak lurus kita mengenal tiga besaran utama yaitu perpindahan (linear), kecepatan (linear) dan Percepatan (linear). Gerak melingkar juga memiliki tiga komponen tersebut, yaitu perpindahan sudut, kecepatan sudut dan percepatan sudut. Pada gerak lurus kita juga mengenal Gerak Lurus Beraturan dan Gerak Lurus Berubah Beraturan. Dalam gerak melingkar juga terdapat Gerak Melingkar Beraturan (GMB) dan Gerak Melingkar Berubah Beraturan (GMBB). Selengkapnya akan kita bahas satu persatu. Sekarang mari kita berkenalan (kaya manusia aja ya) dengan besaran-besaran dalam gerak melingkar dan melihat hubungannya dengan besaran fisis gerak lurus.

Perpindahan Sudut

Mari kita tinjau sebuah contoh gerak melingkar, misalnya gerak roda kendaraan yang berputar. Ketika roda berputar, tampak bahwa selain poros alias pusat roda, bagian lain roda lain selalu berpindah terhadap pusat roda sebagai kerangka acuan. Perpindahan pada gerak melingkar disebut perpindahan sudut. Bagaimana caranya kita mengukur perpindahan sudut ?

Ada tiga cara menghitung sudut. Cara pertama adalah menghitung sudut dalam derajat (o). Satu lingkaran penuh sama dengan 360o. Cara kedua adalah mengukur sudut dalam putaran. Satu lingkaran penuh sama dengan satu putaran. Dengan demikian, satu putaran = 360o. Cara ketiga adalah dengan radian. Radian adalah satuan Sistem Internasional (SI) untuk perpindahan sudut, sehingga satuan ini akan sering kita gunakan dalam perhitungan. Bagaimana mengukur sudut dengan radian ?

Mari kita amati gambar di bawah ini.

Nilai radian dalam sudut adalah perbandingan antara jarak linear x dengan jari-jari roda r. Jadi,

Perhatikan bahwa satu putaran sama dengan keliling lingkaran, sehingga dari persamaan di atas, diperoleh :

Derajat, putaran dan radian adalah besaran yang tidak memiliki dimensi. Jadi, jika ketiga satuan ini terlibat dalam suatu perhitungan, ketiganya tidak mengubah satuan yang lain.

Kecepatan Sudut

Dalam gerak lurus, kecepatan gerak benda umumnya dinyatakan dengan satuan km/jam atau m/s. Telah kita ketahui bahwa tiap bagian yang berbeda pada benda yang melakukan gerak lurus memiliki kecepatan yang sama, misalnya bagian depan mobil mempunyai kecepatan yang sama dengan bagian belakang mobil yang bergerak lurus.

Dalam gerak melingkar, bagian yang berbeda memiliki kecepatan yang berbeda. Misalnya gerak roda yang berputar. Bagian roda yang dekat dengan poros bergerak dengan kecepatan linear yang lebih kecil, sedangkan bagian yang jauh dari poros alias pusat roda bergerak dengan kecepatan linear yang lebih besar. Oleh karena itu, bila kita menyatakan roda bergerak melingkar dengan kelajuan 10 m/s maka hal tersebut tidak bermakna, tetapi kita bisa mengatakan tepi roda bergerak dengan kelajuan 10 m/s.

Pada gerak melingkar, kelajuan rotasi benda dinyatakan dengan putaran per menit (biasa disingkat rpmrevolution per minute). Kelajuan yang dinyatakan dengan satuan rpm adalah kelajuan sudut. Dalam gerak melingkar, kita juga dapat menyatakan arah putaran. misalnya kita menggunakan arah putaran jarum jam sebagai patokan. Oleh karena itu, kita dapat menyatakan kecepatan sudut, di mana selain menyatakan kelajuan sudut, juga menyatakan arahnya (ingat perbedaan kelajuan dan kecepatan, mengenai hal ini sudah Gurumuda terangkan pada Pokok bahasan Kinematika). Jika kecepatan pada gerak lurus disebut kecepatan linear (benda bergerak pada lintasan lurus), maka kecepatan pada gerak melingkar disebut kecepatan sudut, karena benda bergerak melalui sudut tertentu.

Terdapat dua jenis kecepatan pada Gerak Lurus, yakni kecepatan rata-rata dan kecepatan sesaat. Kita dapat mengetahui kecepatan rata-rata pada Gerak Lurus dengan membandingkan besarnya perpindahan yang ditempuh oleh benda dan waktu yang dibutuhkan benda untuk bergerak . Nah, pada gerak melingkar,kita dapat menghitung kecepatan sudut rata-rata dengan membandingkan perpindahan sudut dengan selang waktu yang dibutuhkan ketika benda berputar. Secara matematis kita tulis :

Bagaimana dengan kecepatan sudut sesaat ?

Kecepatan sudut sesaat kita diperoleh dengan membandingkan perpindahan sudut dengan selang waktu yang sangat singkat. Secara matematis kita tulis :

Sesuai dengan kesepakatan ilmiah, jika ditulis kecepatan sudut maka yang dimaksud adalah kecepatan sudut sesaat. Kecepatan suduttermasuk besaran vektor. Vektor kecepatan sudut hanya memiliki dua arah (searah dengan putaran jarum jam atau berlawanan arah dengan putaran jarum jam), dengan demikian notasi vektor omega dapat ditulis dengan huruf miring dan cukup dengan memberi tanda positif atau negatif. Jika pada Gerak Lurus arah kecepatan sama dengan arah perpindahan, maka pada Gerak Melingkar, arah kecepatan sudut sama dengan arah perpindahan sudut.

Percepatan Sudut

Dalam gerak melingkar, terdapat percepatan sudut apabila ada perubahan kecepatan sudut. Percepatan sudut terdiri dari percepatan sudut sesaat dan percepatan sudut rata-rata. Percepatan sudut rata-rata diperoleh dengan membandingkan perubahan kecepatan sudut dan selang waktu. Secara matematis ditulis :

Percepatan sudut sesaat diperoleh dengan membandingkan perubahan sudut dengan selang waktu yang sangat singkat. Secara matematis ditulis :

Satuan percepatan sudut dalam Sistem Internasional (SI) adalah rad/s2 atau rad-2

HUBUNGAN ANTARA BESARAN GERAK LURUS DAN GERAK MELINGKAR

Pada pembahasan sebelumnya, kita telah mempelajari tentang besaran fisis Gerak Melingkar, meliputi Perpindahan Sudut, Kecepatan Sudut dan Percepatan Sudut. Apakah besaran Gerak Melingkar tersebut memiliki hubungan dengan besaran fisis gerak lurus (perpindahan linear, kecepatan linear dan percepatan linear) ?

Dalam gerak melingkar, arah kecepatan linear dan percepatan linear selalu menyinggung lingkaran. Karenanya, dalam gerak melingkar, kecepatan linear dikenaljuga sebagai kecepatan tangensial dan percepatan linear disebut juga sebagai percepatan tangensial.

Hubungan antara Perpindahan Linear dengan Perpindahan sudut

Pada gerak melingkar, apabila sebuah benda berputar terhadap pusat/porosnya maka setiap bagian benda tersebut bergerak dalam suatu lingkaran yang berpusat pada poros tersebut. Misalnya gerakanroda yang berputar atau bumi yang berotasi. Ketika bumi berotasi, kita yang berada di permukaan bumi juga ikut melakukan gerakan melingkar, di mana gerakan kita berpusat pada pusat bumi. Ketika kita berputar terhadap pusat bumi, kita memiliki kecepatan linear, yang arahnya selalu menyinggung lintasan rotasi bumi. Pemahaman konsep ini akan membantu kita dalam melihat hubungan antara perpindahan linear dengan perpindahan sudut. Bagaimana hubungan antara perpindahan linear dengan perpindahan sudut ?

Perhatikanlah gambar di bawah ini.

Ketika benda berputar terhadap poros O, titik A memiliki kecepatan linear (v) yang arahnya selalu menyinggung lintasan lingkaran.

Hubungan antara perpindahan linear titik A yang menempuh lintasan lingkaran sejauh x dan perpindahan sudut teta (dalam satuan radian), dinyatakan sebagai berikut :

Di mana r merupakan jarak titik A ke pusat lingkaran/jari-jari lingkaran.

Hubungan antara Kecepatan Tangensial dengan Kecepatan sudut

Besarnya kecepatan linear (v) benda yang menempuh lintasan lingkaran sejauh delta x dalam suatu waktu dapat dinyatakan dengan persamaan :

Sekarang kita subtitusikan delta x pada persamaan 2 ke dalam persamaan 1

Dari persamaan di atas tampak bahwa semakin besar nilai r (semakin jauh suatu titik dari pusat lingkaran), maka semakin besar kecepatan linearnya dan semakin kecil kecepatan sudutnya.

Hubungan antara Percepatan Tangensial dengan Percepatan Sudut

Besarnya percepatan tangensial untuk perubahan kecepatan linear selama selang waktu tertentu dapat kita nyatakan dengan persamaan

at = percepatan tangensial, r = jarak ke pusat lingkaran (jari-jari lingkaran) dan alfa= percepatan sudut. Berdasarkan persamaan ini, tampak bahwa semakin jauh suatu titik dari pusat lingkaran maka semakin besar percepatan tangensialnya dan semakin kecil percepatan sudut.

Semua persamaan yang telah diturunkan di atas kita tulis kembali pada tabel di bawah ini.

Catatan : Pada gerak melingkar, semua titik pada benda yang melakukan gerak melingkar memiliki perpindahan sudut, kecepatan sudut dan percepatan sudut yang sama, tetapi besar perpindahan linear, kecepatan tangensial dan percepatan tangensial berbeda-beda, bergantung pada besarnya jari-jari (r)

Latihan Soal 1 :

Sebuah roda melakukan 900 putaran dalam waktu 30 detik. Berapakah kecepatan sudut rata-ratanya dalam satuan rad/s ?

Panduan Jawaban :